ECNU at 2015 CDS Track: Two Re-ranking Methods in Medical Information Retrieval
نویسندگان
چکیده
This paper summarizes our work on the TREC 2015 Clinical Decision Support Track. We present a customized learningto-rank algorithm and a query term position based re-ranking model to better satisfy the tasks. We design two learning-to-rank framework: the pointwise loss function based on random forest and the pairwise loss function based on SVM. The position based re-ranking model is composed of BM25 and a heuristic kernel function which integrates Gaussian, triangle, cosine and the circle kernel function. Furthermore, the Web-based query expansion method is utilized to improve the quality of the queries.
منابع مشابه
KISTI at TREC 2014 Clinical Decision Support Track: Concept-based Document Re-ranking to Biomedical Information Retrieval
With fast development of medical information systems and software, clinical decision support (CDS) systems continue to develop new methods to deal with diverse information coming from heterogeneous sources such as a large volume of electronic medical records (EMRs), patient genomic data, existing genomic pharmaceutical databases, curated disease-specific databases, peer-reviewed research, etc. ...
متن کاملHokieGo at 2017 PM Task: Genetic Programming based re-ranking method In Biomedical Information Retrieval
This paper summarizes our efforts on TREC 2017 Precision Medicine Track. We present a genetic programming based learning-to-rank algorithm. We perform two training experiments on 2014 and 2016 TREC CDS data and apply the pre-trained model as re-ranking method to improve the performance. In addition, two utility functions, CHK and FFP4, have been used for the training optimization.
متن کاملSNUMedinfo at TREC CDS track 2014: Medical case-based retrieval task
This paper describes the participation of the SNUMedinfo team at the TREC Clinical Decision Support track 2014. This task is about medical casebased retrieval. Case description is used as query text. Per each query, one of three categories (Diagnosis, Test and Treatment) is designated as target information need. Firstly, we used external tagged knowledge-based query expansion method for the rel...
متن کاملTHUIR at TREC 2008: Relevance Feedback Track
Tsinghua University Information Retrieval Group (THUIR) has participated into the first Relevance Feedback Track of TREC2008. The TMiner search engine has been used as our text retrieval system, because the processing capability and flexibility of this system on large text data has been testified during many years’ Web Track and Terabyte Track. In the track, we studied two approaches: 1) query ...
متن کاملTHUIR at TREC2008: Relevance Feedback Track1
Tsinghua University Information Retrieval Group (THUIR) has participated into the first Relevance Feedback Track of TREC2008. The TMiner search engine has been used as our text retrieval system, because the processing capability and flexibility of this system on large text data has been testified during many years’ Web Track and Terabyte Track. In the track, we studied two approaches: 1) query ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015